Nanotechnology

Sponsored by PI (Physik Instrumente) LPNov 25 2023Reviewed by Olivia Frost

Engineers Jonas Reiser and Mathias Winter provide insights into PI's surface-shaping solutions for the future.

"We have created a hybrid solution with smart actuator arrays to cover the customer requirements of tomorrow."

Programmable Ceramic Spacers and Shims

PIRest, featuring programmable piezo shims, can maintain position without power and adjust thickness in increments smaller than one nanometer. The combination of PIRest with common piezoelectric actuator technologies in smart arrays can address the precision requirements of the future.

Precision Requirements in Next-Generation Semiconductor and Astronomy Applications

The semiconductor industry and astronomy applications demand high precision and control. Engineers in the semiconductor industry are looking for smaller actuator pitches and better process parameter control.

Active surface shaping with piezoelectric actuators. Image Credit: PI (Physik Instrumente) LP

Dynamic Compensation of Local Changes on Substrate Surfaces

Many customers require solutions that dynamically compensate for local substrate changes caused by heat or inaccuracies. Adaptive optics corrections for dynamic and quasi-static imaging errors are also essential.

Semi-active piezo actuator elements, rooted in the patented PIRest technology, can adjust the remnant strain of piezo actuators within applications, maintaining programmed positions without a supply voltage.

Combining Active and Semi-Active Actuators

Bringing together active and semi-active actuator components in a single solution assists in dynamically shaping surfaces. It also allows for the correction of static changes caused by factors like aging or drifting, without the need for a continuous power supply to the actuators.

Using piezoelectric actuators enables achieving nanometer and sub-nanometer precision, with travel ranges from less than one micron to tens of microns being possible.

A large piezo actuator array for controlled precision surface deformation. Image Credit: PI (Physik Instrumente) LP

The challenge is to find an innovative actuator array and drive concepts capable of managing several thousand piezo actuators, while finely adjusting them with nanometer precision.

A simulation tool is in development to virtually test various connection and drive concepts, streamlining and hastening the development process.

PI's goals involve seeking novel projects and collaborating closely with its customers. It also aims to expand the achievable boundaries and advance precision in its technologies.

Active Surface-Shaping in Brief

  • Flexible Actuator Design: Combining active, semi-active, or hybrid piezo actuator technologies with diverse designs accommodates specific stroke, force, or resolution requirements.
  • Flexible in Operation: Employing dynamic, quasi-static, and mixed operation allows the generation of different amplitudes while minimizing position noise.
  • Flexible in Shape: Arranging actuators or actuator arrays variably facilitates different deformations with superior resolution. Implementing smart wiring, drive, and sensor concepts simplifies the hardware setup.
  • Flexible in Feature Size: Using structured composition in piezo ceramic material ensures maximum operational flexibility and shaping of the smallest features.

This information has been sourced, reviewed and adapted from materials provided by PI (Physik Instrumente) LP.

For more information on this source, please visit PI (Physik Instrumente) LP.